Taking Up the Cyanine Challenge with Quantum Tools
نویسندگان
چکیده
Cyanine derivatives, named from the Greek word kyanos meaning dark-blue, were discovered more than 150 years ago and remain one of the most widely used classes of organic dyes with contemporary applications in photography (panchromatic emulsions), information storage (CD-R and DVD-R media) and biochemistry (DNA and protein labeling) fields. Cyanine chromogens consist of a charged π-conjugated segment containing an odd number of sp(2) carbon atoms with the chain capped at the extremities by two electronegative centers, typically nitrogen or oxygen atoms. Cyanines are characterized by a vanishing bond length alternation indicating nearly equal carbon-carbon bond lengths, as well as a very intense and sharp absorption band presenting a shoulder. This hallmark band undergoes a strong red shift when the chain is extended. This so-called vinyl shift is extremely large (ca. 100 nm for each pair of carbon atoms added in the π-conjugated path), making cyanines ideal building blocks for the design of devices with near-infrared applications. Numerous cyanines also exhibit emission bands with large quantum yields. These exceptional optical properties explain why both canonical cyanines and the corresponding fluoroborates (e.g., boron-dipyrromethene, BODIPY) remain the focus of an ever-growing body of experimental work. In turn, this popularity has stimulated quantum mechanical investigations aiming, on the one hand, at probing the specific electronic nature of cyanine dyes and, on the other hand, at helping to design new dyes. However, the adiabatic approximation to time-dependent density functional theory, the most widespread ab initio model for electronically excited states, fails to accurately reproduce the absorption spectra of cyanine derivatives: it yields a systematic and large underestimation of the experimental wavelengths irrespective of the details of the computational protocol. In contrast, highly correlated wave function approaches provide accurate transition energies for model systems but are hardly applicable to real-life cyanines and BODIPY. This indicates that setting up a computationally tractable theoretical protocol that provides both robust and accurate optical spectra for cyanine-based dyes is a major challenge that has only been taken up lately. In this Account, we compile the most recent advances in the field by considering both compact streptocyanines and large fluoroborates. For the former, we summarize the key results obtained with a large panel of theoretical approaches, allowing us not only to understand the origin of the cyanine challenge but also to pinpoint the schemes presenting the most promising accuracy/effort ratio. For the latter, we show via selected examples how theoretical models can be used to reproduce simultaneously experimental band shapes and transition energies, thus paving the way to an efficient in silico design of new compounds.
منابع مشابه
Novel Near-Infrared Cyanine Dyes for Fluorescence Imaging in Biological Systems
Heptamethine cyanine dyes are attractive compounds for imaging purposes in biomedical applications because of their chemical and photophysical properties exhibited in the nearinfrared region. A series of meso amino-substituted heptamethine cyanine dyes with indolenine, benz[e]indolenine and benz[c,d]indolenine heterocyclic moieties were synthesized and their spectral properties including fluore...
متن کاملThe Effect of Varying Short-Chain Alkyl Substitution on the Molar Absorptivity and Quantum Yield of Cyanine Dyes
The effect of varying short-chain alkyl substitution of the indole nitrogens on the spectroscopic properties of cyanine dyes was examined. Molar absorptivities and fluorescence quantum yields were determined for a set of pentamethine dyes and a set of heptamethine dyes for which the substitution of the indole nitrogen was varied. For both sets of dyes, increasing alkyl chain length resulted in ...
متن کاملPhotoinduced hole-transfer in semiconducting polymer/low-bandgap cyanine dye blends: evidence for unit charge separation quantum yieldw
Power-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor–acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence and absorption, as well as nanosecond transient absorption spectroscopy to study the initial charge transfer step for blends of a donor poly(p-...
متن کاملSodium Alginate Magnetic Beads for Removal of Acid Cyanine 5R from aqueous solution
Introduction: The water pollution remediation is a challenging topic in environmental science. The purpose of this study was to achieve the practical methods for evaluation of the efficiency of latest modern technologies in order to remove dyes from the aqueous solution. Methods: In this experimental study, we used nanotechnology technique for production of the Sodium alginate magnetic be...
متن کاملSynthesis, Spectral Characteristics of Cyanine Dye Cy3 Bonding Cdte/cds Core/shell Structure Quantum Dots
Using mercaptoethylamine as a stabilizing agent, CdTe/CdS core/shell structure quantum dots (QDs) were prepared by a one-pot synthesis based on a simple high pressure autoclave. In addition, a new compound QDs-Cy3 was synthesized by chemical bonding between QDs and Cy3, which bond each other in a complex embrace involving aminogroup on QDs and carboxyl on Cy3. The products structures were chara...
متن کامل